Pollen-Pistil Interaction and its Significance (2023)


In this article we will discuss about the events in pollen-pistil interaction with its significance.

Pollen-Pistil Interaction:

Pollen grains are deposited on the stigma either due to closeness of the anthers to the stigma or by pollinating agents (biotic or abiotic). This unique feature brings about pollen-pistil interaction between the male gametophyte, the pollen grains, with the massive sporophytic tissue.

A successful pollination brings about sequential events in the pollen-pistil interaction that ultimately ends up by the discharge of the male gametes in the embryo sac (Fig 6.1).

All the events beginning from pollination to the release of gametes in the embryo sac form a part of the pollen-pistil interaction or the programic phase.

Pollen Attachment and Hydration:

The attachment of the pollen on the stigma depends upon its wall sculpture and stickiness. In wet stigma adhesion is mostly a mechanical process, whereas, in dry stigma it depends on the extent and composition of the pellicle, and the amount of surface-coat substances on the pollen.

Pollen hydration proceeds in a controlled manner characterized by distinct area of stability of increasing water content and can begin in the anther before pollen release. Its rapidity is dependent to a great extent on the nature of stigma, for instance in a dry stigma hydration is gradual and controlled by the water potential of the stigma and pollen.


This controlled hydration provides suitable conditions for the recovery of the membrane integrity of the vegetative cell.

A plausible pathway for hydration in dry stigma as proposed by J.Heslop-Harrison (1979) is given below:

In a stigma with aqueous exudates hydration is very rapid. For instance in Petunia the stigma is covered with a lipoidal exudates and a thin layer of water which establishes a moisture gradient through the lipoidal exudates. The pollen grain thus gradually gets hydrated.

Ultrastructural and physiological studies of pollen hydration in Brassica show two distinct phases of hydration. During the initial phase, putative signals are reciprocally exchanged between pollen and stigma. The second phase proceeds with an invagination of the intine in the colpial zone and formation of a ‘foot’ of pollen coating that contact the stigma papilla.

Freeze-etch preparation show microchannels at the papilla-pollen boundary through which water moves from stigma to pollen grain but not between grains. The area around the site of pollen tube emergence is rich in pectins, and one of the earliest visible alterations of macromolecules upon hydration is a loss of protein and pectic material from the length of the colpial slit.

Pollen Germination and Tube Growth:

The stigmatic surface provides the essential prerequisites for a successful germination that are absent in the pollen. In wet stigma, the role of the stigmatic exudates in pollen germination is highly variable.

In Amaryllis and Crinum, stigmatic exudates are essential for pollen germination, however, in Nicotiana and Petunia the exudates play no significant role during germination, since young stigmas free from exudates support satisfactory germination of pollen grains.


In dry stigma, the pellicle plays a vital role in germination. Its enzyma tic removal inhibits pollen germination or pollen tube entry into stigma. For instance in Raphanus sativus enzymatic digestion of the pellicle reduces pollen germination and totally inhibits the entry of even compatible tubes into the stigmatic papillae.

The stigmatic surface also provides boron and calcium which are required for germination but are deficient in pollen. It has been seen that those stigmatic secretion of Vitis vinifera that contain 2-5 ppm of boron permit pollen germination.

The growth of the pollen tube of flowering plants is restricted exclusively at their apices. Microscopic examination of growing pollen tubes reveals that most of the cytoplasm is restricted to the apical region while a large vacuole fills the grain and the older region of the tube (Figure 6.6). The cytoplasm is restricted to the apical region of the growing tube by the formation of series of callose plugs at regular intervals behind the tip (Figure 6.7).

The callose plugs are formed as a ring on the inner side of the tube wall and gradually grow toward the centre which finally seals off the growing tip from rest of the pollen tube. There is characteristic zonation, in which the apical region of the tube possesses a clear cap called “cap block” with more granular elements behind. The “cap block” disappears with the termination of the growth. These internal components exhibit vigorous “reverse fountain” cytoplasmic streaming.

However, within the tip itself the motion is chaotic and turbulent, with vesicles appearing to move in a random, from the base of the clear zone to the extreme apex. There is marked accumulation of secretory vesicles often in the shape of an inverted cone at the tube apex.

These vesicles contain components for cell wall expansion, because more vesicles are secreted than are required to support the increased area of the plasma membrane. Actin polymerization is necessary for pollen tube growth.

Actin microfilaments (MFs) are involved in the transport of secretory vesicles essential for cell elongation and is accumulated in substantial amounts in mature pollen grains. The cytoplasm behind the tip is rich in cell organelles, lipid bodies, vesicles, and amyloplasts.


Pollen tubes do not grow uniformly, but rather in bursts or pulses. In Petunia and tobacco, the tube cell elongates with alternating bursts of fast and slower growth, while lily tubes, especially those longer than 700 pm, grow with a periodic oscillatory pattern in which the rate changes in smooth sine wave. In lily pollen tubes the rate changes from 100-500 nm/sec with a frequency of 15-50 sec.

Many underlying physiological processes also oscillate with the same frequency, but with varying phase relationships to growth rate. For example, the intracellular Ca2+ gradient oscillates in phase or slightly behind the growth peak, while the extracellular Ca2+ influx exhibits a 10-15 sec delay. H+ also oscillates.

To date, genes specifically associated with pollen germination have not been identified. However, the large number of unidentified proteins (> 230) whose appearance is coincident with germination suggests that it may be premature to conclude that none of them arises from transcripts activated specifically at germination.

Some early gene products such as alcohol dehydrogenase, actin, and a heat- shock protein from tomato persist in germinating pollen. Although the late genes are transcriptionally activated before dehydration, their persistence during germination and growth argues for a functional role at this stage.


A pollen specific calcium-dependent calmodulin-independent protein kinase (CDPK) isolated from maize suggests the presence of post-translational control mechanism involving Ca2+ and phosphorylation. The gene is transcribed in mature and germinating pollen and is required for germination.

Following pollen germination the pollen tube-grows on the surface of the stigmatic papillae, e.g., Gossypium, or through the cellulose-pectic layer of their walls, e.g., Lilium. The stigma provides the pollen with water and necessary medium in the form of exudates for its germination. The exudates are highly viscous, refractive and adhesive. These are rich in lipids, small amount of free sugars, amino acids, proteins, and peptides.

In dry stigma and solid style, the pollen tube degrades the cuticle by cutanase released by the pollen. Pollen grains contain an elaborate set of enzymes and some of these are available as soon as the pollen grain makes contact with the stigma.

The digestion of the cuticle allows the tube to enter the pectocellulosic wall of the papillae and finally grow through the intercellular substances of the stigma and the style. In Gladiolus the pollen tube grows through a mucilaginous substance accumulated between the cuticle and cell wall, instead of the pecto­cellulosic wall.

In wet stigma and solid style the cuticle gets disrupted during the secretion of the exudates and the pollen tube enters the intercellular matrix of the stigmatic tissue.

Path of Pollen Tube in the Style:


In species with wet stigma and solid style the cuticle of the stigma /papillae is disrupted during the secretion of the exudates, thus there is no physical barrier for pollen tube entry into the intercellular spaces of the transmitting tissue of the stigma. In taxa with wet stigma and hollow style, pollen tubes grow on the surface of the stigma and enter the stylar canal.

In species with dry stigma and solid style the cuticle provides the physical barrier for the pollen tube entry. The cuticle is eroded at the point of contact by the activity of cutinases released by the pollen. After the digestion of the cuticle, the tube enters the pectocellulosic wall of the papillae and finally grows through the intercellular substances of the stigma and the style.

In Gladiolus and Crocus the pollen tube grows through the mucilage accumulated between the cuticle and the cell wall.

Pollen tube growth is a calculated directional cell migration, along the transmitting tissue of the style. In most of the species pollen tube make their way to the ovary through the intercellular matrix of the transmitting tissue or through the mucilaginous matrix of the hollow style. The secretion product of the glandular cells of the solid stylar tissue is deposited in the matrix.

It is a heterogenous mixture consisting chiefly of sugars, proteins, gycoproteins, and lipids. In several dicotyledons and monocotyledons the transmitting tissue contains arabinogalactan proteins. This glycoprotein is style-specific, and its presence in the cytoplasm and cell walls of compatible pollen tubes growing in the style have favoured its role in the nutrition, growth, and guidance of pollen tubes in the stylar tract.

In the hollow styles, the canal cells secrete a mucilaginous substance that later forms an extracellular matrix and accumulates in the stylar canal. The major component of this secretion is again an arabinogalactan protein.


Path of Pollen Tube in the Ovule and Embryo Sac:

The pollen tube finally pushes through the ovule and reaches the embryo sac. This guidance into the ovule is in terms of essential signals originating from the male and female tissues.

Evidences obtained from the analysis of developmental mutants of Arabidopsis, viz., bell and sinl (where integument and embryo sac development in the ovule is affected) suggests that genes active in the female gametophyte play a crucial role in the signalling process that guides pollen tubes to the ovule.

In fact pollen tubes are always attracted to ovules with a functional embryo sac, which confirms a female gametophytic control of pollen tube guidance.

Recognition of the Pollen by the Stigma:

The stigmatic surface of a flower provides refuge to various pollen grains, but a physiological mechanism operates to ensure that only intraspecific pollen germinate successfully. In sporophytic self-incompatibility system the recognition reaction system sets in almost immediately after the pollen comes in contact with the stigma.

This is also true for certain gametophytic self- incompatibility systems. The components of pollen recognition system are present in all floral organs, but are segregated to the surface of the stigma by the action of genes like PDH.

Recognition of compatible pollen grains by the stigmatic papillae involves a molecular interaction between substances present in the pollen wall and those present on the pellicle or in the stigmatic surface.

In fact recognition mechanism is switched on with the hydration of pollen and the subsequent release of its wall proteins. The molecular events that are switched on, following the acceptance or rejection of the pollen grains have been studied in Brassica napus, B. oleracea, and Arabidopsis, from where the details are gradually emerging out.

The pollen grains following contact with the stigma synthesis nearly forty new proteins, and few of these proteins are highly phosphorylated. Thus it appears that protein phosphorylation may be responsible for signal transduction in a compatible association.

Moreover, there is a brief Ca2+ peaks in the stigmatic papillae of Brassica napus following its contact with compatible pollen grains. Thus there is a definite participation of a Ca2+ in pollen signal perception but how the system is activated to promote hydration and germination of pollen grains is not clear.

The involvement of a specific component of the pollen-wall-based tryphine in the regulation of pollen-stigma interactions has been provided by the mutational study in Arabidopsis. Preuss (1993) isolated a mutant (pop1) Arabidopsis, which was defective in pollen-pistil interactions, thus inducing male sterility.

The grains failed to hydrate on the stigma and germinate, though it responded successfully in vitro. The failure of the mutant to germinate in vivo was possibly due to loss of tryphine components on the wall of mutant pollen grains, and this was substantiated by the absence of wax on the stem of pop1 mutants.


Further chemical analysis has shown that wax deficiency on the stem is correlated with the absence of long chain lipids on the mutant pollen grains. Further a mutation in the CER1 locus of Arabidopsis which affect pollen hydration on the stigma, have also been traced to lack functional tryphine layer with the normal components of lipids on the pollen grains.

The gene has also been shown to encode for a new protein, involved in catalytic steps of wax biosynthesis. Thus lipid molecules and tryphine are involved in the signaling mechanism that allows the stigma to have a successful pollination event.

Pollen grains of a transgenic Petunia hydrida plant, deficient in flavonoids failed to germinate or produced very short pollen tube in vitro. This inhibition was nullified by the addition of stigma extract from the wild type Petunia or by adding micromolar quantities of flavonoids (kaempferol) to the germinating medium.

Sharma and Shivanna (1983 a, b) investigated the biochemical basis of self- incompatibility recognition in Petunia hybrida by using in vitro assay. Pollen grains were cultured in a medium containing pistil extract and before that the grains were treated with sugars or with lectins.

Interestingly self-incompatibility could be avoided when the pollen grains were treated with glucose or lactose but not with lectins thus indicating that lectin-like components are involved in self-incompatibility recognition. Blocking these molecules with corresponding sugars make them ineffective in establishing recognition, and thus overcome inhibition.

Likewise, inclusion of specific lectins into medium containing pistil extract was also effective in overcoming inhibition of self-pollen. Seemingly, recognition factors in the pistil are polysaccharide-containing molecules and the binding of the saccharides with the specific lectins makes them ineffective in recognizing self-pollen.

Significance of Pollen Pistil Interaction:

Pollen-pistil interaction is unique in flowering plants and plays a significant role in sexual reproduction and seed formation. The pollen grains carrying the male gametes do not have a direct admittance to the female gamete.

Thus they need to be deposited on the stigma and it’s pollen tube has to grow through the massive sporophytic tissues of the stigma and style prior to release of male gametes near the egg. The pistil has developed a unique mechanism to recognize pollen grains and thereby permit the growth of pollen tube in compatible cases.

Incompatible tube is thus effectively prevented from reaching the embryo sac. The barrier to fertilization is restricted to the sporophytic tissues of the pistil. At the same time there is no chance of unsuccessful fertilization ones the male gametes have been released near the egg.

The principal significance of pollen-pistil interactions are:

a. The most essential requirement for sexual reproduction is the screening and selection of male gamete and this is achieved during pollen pistil interaction. Thus, pollen-pistil interaction offers enormous potential for the manipulation of pollen screening which is obviously for the quality and compatibility of pollen.

b. The number of pollen grains that are generally deposited on the stigma under normal conditions are far greater than the number of ovules available for fertilization. As a result the pollen grains are subjected to a tough competition during pollen-pistil interaction.

Only those pollen that germinate early and have a faster growing pollen tube, i.e., more vigorous, are able to withstand the rigidity of post- pollination competition and fertilization. Consequently competition among pollen grains during pollen-pistil interaction results in the increased vigour of the progeny. Thus this interaction can be considered as an important contributory factor in the evolutionary success of flowering plants.

c. It has a direct relevance to plant breeding programmes. A plant breeder continuously strives to bring together desirable characters present in different taxa, through hybridization.

Thus a better understanding of the biology of pollen-pistil interaction would no doubt, enable the plant breeders to manipulate the screening process in the pistil more effectively.

Related Articles:

  1. Structure of Pistil | Palynology
  2. Estimation of Pollen Viability and Vigour after Storage in Plants


What is the significance of the pollen pistil interaction? ›

The pistil is unique to angiosperms. It serves a protective role and functions as a conduit for pollen tubes to grow to the ovary, but it also provides a venue for pollen-pistil interactions that regulate pollen tube growth and, hence, fertilization.

What is the significance of pollen stigma interaction? ›

Pollen-stigma interaction determines the pollen germination on stigma. The stigmatic surface recognises the specific pollen grain and only then it is allowed to hydrate and finally germinate.

What is the pollen pistil interaction and how it is mediated? ›

When a pollen grain lands on the stigma, the chemical components of both the pollen and stigma interact with each other which helps in the recognition of compatible pollen. The compatible pollen absorbs water and nutrition from the surface of the stigma.

What is pollen pistil interaction called? ›

> All the activities from the pollen deposition at the stigma till pollen tubes invade the ovule are called as pollen pistil interlinkage or interconnection.

What is the significance of pistil? ›

Pistil helps to receive pollen and in the fertilization process. The pistil is also involved in the process of germination of the pollen grains. It also helps to transfer pollen grains in the process of pollination.

What is the significance of pollen analysis? ›

Analysis of pollens gives a significant option for the identification of source plant communities, source environment, and likely source regions for evidentiary material. Forensic palynology is known as a profoundly significant, precise and powerful methods of forensic reconstruction.

What is the significance of pollen culture? ›

(1) Pollen culture has great importance in mutagenic studies. (2) By anther and, pollen culture many haploid plants can be produced very rapidly. (3) Homozygous diploid plants obtained by doubling the chromosomes of haploids have great importance in plant breeding and crop improvement.

What is the most important significance of cross pollination? ›

Advantages of cross pollination: The offspring are healthier. The seeds are produced in larger number and are more viable. The seeds develop and germinate properly and grow into better plants.

What is the significance of stigma in flower? ›

A female part of the flower. It is the sticky bulb that you see in the center of flowers and is the part where the pollen lands and starts the fertilization process.

What happens when pollen lands on the pistil? ›

When the pollen grain lands on the stigma, chemical communication occurs between the pollen grain and the pistil, helping the pistil recognize the right type of pollen. After acceptance, pollen begins to germinate and the pollen tube develops towards the ovary carrying the male gamete.

What is the pollen pistil interaction and self incompatibility? ›

Self-incompatibility is the incompatibility between the pollen and the stigma of the same individual. If the pollen and the stigma are compatible, the pollen absorbs the water (hydrates) from the stigma and the pollen tube emerges. The pollen tube grows down the style of the carpel toward the micropyle.

What is the difference between pollen and pistil? ›

Stamen: The pollen producing part of a flower, usually with a slender filament supporting the anther. Anther: The part of the stamen where pollen is produced. Pistil: The ovule producing part of a flower. The ovary often supports a long style, topped by a stigma.

What is pistil pollination? ›

At flower maturity, when pollination takes place, the pistil is fully developed and composed of stigma, style, and ovary. Whether the pollen is transported by the wind or by animal pollinators, after landing on the stigma the pollen grain hydrates and germinates a tube.

What are the three important parts of the pistil? ›

The pistil usually is located in the center of the flower and is made up of three parts: the stigma, style, and ovary.

Where is pollen produced? ›

Pollen is produced by cone-bearing and flowering plants as part of their reproduction process. In cone-bearing (gymnosperms) plants, pollen is produced in pollen cones. Flowering plants (angiosperms) produce pollen in the anthers within the flower.

What are the three types of pistil? ›

Since it is the female portion of the flower, the pistil is also referred to as the gynoecium (“female house”). There are three varieties of gynoecium: ((1) unicarpellate (sometimes called a “simple pistil), (2) syncarpous (“compound pistil”), and (3) apocarpous (“multiple pistil”).

What are important facts about pollination? ›

Pollination is a vital stage in the life cycle of all flowering plants. When pollen is moved within a flower or carried from one flower to another of the same species it leads to fertilization. This transfer of pollen is necessary for healthy and productive native & agricultural ecosystems.

What is pollination and why is it important to plants? ›

What does pollination do? The transfer of pollen in and between flowers of the same species leads to fertilization, and successful seed and fruit production for plants. Pollination ensures that a plant will produce full-bodied fruit and a full set of viable seeds.

Which type of pollination is more important? ›

In cross pollinated flowers more pollen grains are produced and cross pollination helps flower to survive in different climatic environment.

What is the role of stamen? ›

Stamens are the male reproductive organs of flowering plants. They consist of an anther, the site of pollen development, and in most species a stalk-like filament, which transmits water and nutrients to the anther and positions it to aid pollen dispersal.

How do you promote pollination? ›

Here's how to help pollinators thrive:
  1. Native plants are the way to go! Pollinators that are local to your area have long fed on plants that are local to the area. ...
  2. Avoid hybrid plants. ...
  3. Think year-round blooming. ...
  4. Provide food and water sources. ...
  5. Plant in big batches. ...
  6. Provide areas of shelter.
Apr 12, 2021

What happens if the stigma is removed? ›

stigma is a part of pistil so if stigma is removed the pollen grains wont be received hence fertilization dosent take place.

What is the conclusion of pollination? ›

Conclusion. Reproduction in plants occurs by the process of pollination, which results in fertilisation and the formation of zygotes. This zygote, when matured, forms the seed, and seeds develop into new plants. It is a necessary ecological function for survival.

Why are flowers important to plants? ›

Flowers are very important for angiosperms. They produce the seeds that grow into new plants. Each part of a flower has a special job to help achieve this goal. There are four main parts to a flower: the sepals, petals, pistil, and stamen.

What type of interaction is pollination the example of? ›

Plants and their pollinators form a mutualistic relationship, a relationship in which each benefits from the other.

What is the significance of self incompatibility? ›

Self-incompatibility (SI) is defined as the inability to produce zygotes after self-pollination in a fertile hermaphrodite plant, which has stamens and pistils in the same flower. This structural organization of the hermaphrodite flower increases the risk of self-pollination, leading to low genetic diversity.

How is the compatibility of pollen and pistil determined? ›

In GSI, compatibility is determined by the haploid genotype of the male gametophyte; pollen is rejected when its S-haplotype matches either of the two S-haplotypes present in the diploid pistil. In SSI, compatibility is determined by the S-haplotypes of the diploid sporophyte acting as the pollen parent.

Does the pistil make pollen? ›

The top of the pistil is called the stigma, which is a sticky surface receptive to pollen. The bottom of the pistil contains the ovary and the narrowed region in between is called the style. The male contribution or pollen is produced in the anther, and seeds develop in the ovary.

What is pistil also called? ›

Pistils, also known as Gynoecium, are female reproductive part of a flower.

Do pistils mean flowering? ›

Pistils appear early on in the flowering stage. The first pistillate flowers to appear are often called “preflowers” because they don't resemble the large buds that develop later down the line. However, the first of these structures to appear are in fact full pistillate flowers.

What is the most important significance of cross-pollination? ›

Advantages of cross pollination: The offspring are healthier. The seeds are produced in larger number and are more viable. The seeds develop and germinate properly and grow into better plants.

What is the significance of pistil and stamen in a flower? ›

Stamen: The pollen producing part of a flower, usually with a slender filament supporting the anther. Anther: The part of the stamen where pollen is produced. Pistil: The ovule producing part of a flower. The ovary often supports a long style, topped by a stigma.

What is the significance of pollination and fertilization? ›

Pollination brings fertilization by allowing the fusion of male gametes and female gametes. It helps in the production of foods and seeds. Pollination aids in the transmission of features and characteristics from both parents to the offspring.

What does pollen tell us about climate change? ›

Not only can pollen records tell us about the past climate, but they can also tell us how we are impacting our climateBy analyzing pollen from well-dated sediment cores, paleoclimatologists can obtain records of changes in vegetation going back hundreds of thousands, and even millions of years.

What is the most important pollination? ›

Honey bees alone pollinate 80 percent of all flowering plants, including more than 130 types of fruits and vegetables. Unfortunately, bee populations have dropped alarmingly across North America, as have the populations of many other pollinator species.

Which pollination is better and why? ›

Cross-pollination is preferred because it brings about variation in species. Self-pollination does not bring about any variations. Variation brings new traits to the plant which may be advantageous to the plant. For example, it helps the new plant to defend against diseases.

What is the significance of fertilization in plants? ›

-They turn the ovules into seeds. The ovary then is converted into a fruit. -Fertilization-formed seeds protect the generation of plants. It is also noted that due to fertilization, seeds and fruits are produced.


Top Articles
Latest Posts
Article information

Author: Ms. Lucile Johns

Last Updated: 29/11/2023

Views: 6149

Rating: 4 / 5 (61 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Ms. Lucile Johns

Birthday: 1999-11-16

Address: Suite 237 56046 Walsh Coves, West Enid, VT 46557

Phone: +59115435987187

Job: Education Supervisor

Hobby: Genealogy, Stone skipping, Skydiving, Nordic skating, Couponing, Coloring, Gardening

Introduction: My name is Ms. Lucile Johns, I am a successful, friendly, friendly, homely, adventurous, handsome, delightful person who loves writing and wants to share my knowledge and understanding with you.